Extensions 1→N→G→Q→1 with N=C3xC3:C8 and Q=C22

Direct product G=NxQ with N=C3xC3:C8 and Q=C22
dρLabelID
C2xC6xC3:C896C2xC6xC3:C8288,691

Semidirect products G=N:Q with N=C3xC3:C8 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3xC3:C8):1C22 = C24:1D6φ: C22/C1C22 ⊆ Out C3xC3:C8484+(C3xC3:C8):1C2^2288,442
(C3xC3:C8):2C22 = D24:S3φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8):2C2^2288,443
(C3xC3:C8):3C22 = D12:18D6φ: C22/C1C22 ⊆ Out C3xC3:C8244+(C3xC3:C8):3C2^2288,473
(C3xC3:C8):4C22 = D12.28D6φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8):4C2^2288,478
(C3xC3:C8):5C22 = S3xD4:S3φ: C22/C1C22 ⊆ Out C3xC3:C8488+(C3xC3:C8):5C2^2288,572
(C3xC3:C8):6C22 = D12:D6φ: C22/C1C22 ⊆ Out C3xC3:C8248+(C3xC3:C8):6C2^2288,574
(C3xC3:C8):7C22 = D12.7D6φ: C22/C1C22 ⊆ Out C3xC3:C8488+(C3xC3:C8):7C2^2288,582
(C3xC3:C8):8C22 = D12:6D6φ: C22/C1C22 ⊆ Out C3xC3:C8488+(C3xC3:C8):8C2^2288,587
(C3xC3:C8):9C22 = D12.10D6φ: C22/C1C22 ⊆ Out C3xC3:C8488+(C3xC3:C8):9C2^2288,589
(C3xC3:C8):10C22 = Dic6:3D6φ: C22/C1C22 ⊆ Out C3xC3:C8488+(C3xC3:C8):10C2^2288,573
(C3xC3:C8):11C22 = D12.D6φ: C22/C1C22 ⊆ Out C3xC3:C8488-(C3xC3:C8):11C2^2288,575
(C3xC3:C8):12C22 = D12:9D6φ: C22/C1C22 ⊆ Out C3xC3:C8488-(C3xC3:C8):12C2^2288,580
(C3xC3:C8):13C22 = D12:5D6φ: C22/C1C22 ⊆ Out C3xC3:C8248+(C3xC3:C8):13C2^2288,585
(C3xC3:C8):14C22 = S3xD4.S3φ: C22/C1C22 ⊆ Out C3xC3:C8488-(C3xC3:C8):14C2^2288,576
(C3xC3:C8):15C22 = Dic6:D6φ: C22/C1C22 ⊆ Out C3xC3:C8248+(C3xC3:C8):15C2^2288,578
(C3xC3:C8):16C22 = S3xQ8:2S3φ: C22/C1C22 ⊆ Out C3xC3:C8488+(C3xC3:C8):16C2^2288,586
(C3xC3:C8):17C22 = D12.9D6φ: C22/C1C22 ⊆ Out C3xC3:C8488-(C3xC3:C8):17C2^2288,588
(C3xC3:C8):18C22 = C3xD8:S3φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8):18C2^2288,682
(C3xC3:C8):19C22 = C3xQ8:3D6φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8):19C2^2288,685
(C3xC3:C8):20C22 = C3xD12:6C22φ: C22/C1C22 ⊆ Out C3xC3:C8244(C3xC3:C8):20C2^2288,703
(C3xC3:C8):21C22 = C3xD4:D6φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8):21C2^2288,720
(C3xC3:C8):22C22 = S3xC8:S3φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8):22C2^2288,438
(C3xC3:C8):23C22 = C24:D6φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8):23C2^2288,439
(C3xC3:C8):24C22 = S3xC4.Dic3φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8):24C2^2288,461
(C3xC3:C8):25C22 = C3:C8:20D6φ: C22/C1C22 ⊆ Out C3xC3:C8244(C3xC3:C8):25C2^2288,466
(C3xC3:C8):26C22 = S3xD24φ: C22/C2C2 ⊆ Out C3xC3:C8484+(C3xC3:C8):26C2^2288,441
(C3xC3:C8):27C22 = C2xC3:D24φ: C22/C2C2 ⊆ Out C3xC3:C848(C3xC3:C8):27C2^2288,472
(C3xC3:C8):28C22 = S3xC24:C2φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8):28C2^2288,440
(C3xC3:C8):29C22 = C2xD12.S3φ: C22/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):29C2^2288,476
(C3xC3:C8):30C22 = C2xC32:5SD16φ: C22/C2C2 ⊆ Out C3xC3:C848(C3xC3:C8):30C2^2288,480
(C3xC3:C8):31C22 = C3xS3xD8φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8):31C2^2288,681
(C3xC3:C8):32C22 = C6xD4:S3φ: C22/C2C2 ⊆ Out C3xC3:C848(C3xC3:C8):32C2^2288,702
(C3xC3:C8):33C22 = S32xC8φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8):33C2^2288,437
(C3xC3:C8):34C22 = C2xS3xC3:C8φ: C22/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):34C2^2288,460
(C3xC3:C8):35C22 = C2xC12.29D6φ: C22/C2C2 ⊆ Out C3xC3:C848(C3xC3:C8):35C2^2288,464
(C3xC3:C8):36C22 = C2xD6.Dic3φ: C22/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):36C2^2288,467
(C3xC3:C8):37C22 = C2xC12.31D6φ: C22/C2C2 ⊆ Out C3xC3:C848(C3xC3:C8):37C2^2288,468
(C3xC3:C8):38C22 = C3xS3xSD16φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8):38C2^2288,684
(C3xC3:C8):39C22 = C6xD4.S3φ: C22/C2C2 ⊆ Out C3xC3:C848(C3xC3:C8):39C2^2288,704
(C3xC3:C8):40C22 = C6xQ8:2S3φ: C22/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):40C2^2288,712
(C3xC3:C8):41C22 = C6xC8:S3φ: C22/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8):41C2^2288,671
(C3xC3:C8):42C22 = C3xS3xM4(2)φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8):42C2^2288,677
(C3xC3:C8):43C22 = C6xC4.Dic3φ: C22/C2C2 ⊆ Out C3xC3:C848(C3xC3:C8):43C2^2288,692
(C3xC3:C8):44C22 = S3xC2xC24φ: trivial image96(C3xC3:C8):44C2^2288,670

Non-split extensions G=N.Q with N=C3xC3:C8 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3xC3:C8).1C22 = C24.3D6φ: C22/C1C22 ⊆ Out C3xC3:C8964-(C3xC3:C8).1C2^2288,448
(C3xC3:C8).2C22 = Dic12:S3φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8).2C2^2288,449
(C3xC3:C8).3C22 = D12.29D6φ: C22/C1C22 ⊆ Out C3xC3:C8484-(C3xC3:C8).3C2^2288,479
(C3xC3:C8).4C22 = Dic6.29D6φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8).4C2^2288,481
(C3xC3:C8).5C22 = D12.22D6φ: C22/C1C22 ⊆ Out C3xC3:C8488-(C3xC3:C8).5C2^2288,581
(C3xC3:C8).6C22 = S3xC3:Q16φ: C22/C1C22 ⊆ Out C3xC3:C8968-(C3xC3:C8).6C2^2288,590
(C3xC3:C8).7C22 = Dic6.9D6φ: C22/C1C22 ⊆ Out C3xC3:C8488-(C3xC3:C8).7C2^2288,592
(C3xC3:C8).8C22 = D12.13D6φ: C22/C1C22 ⊆ Out C3xC3:C8488+(C3xC3:C8).8C2^2288,597
(C3xC3:C8).9C22 = D12.14D6φ: C22/C1C22 ⊆ Out C3xC3:C8488+(C3xC3:C8).9C2^2288,598
(C3xC3:C8).10C22 = Dic6.19D6φ: C22/C1C22 ⊆ Out C3xC3:C8488-(C3xC3:C8).10C2^2288,577
(C3xC3:C8).11C22 = Dic6.D6φ: C22/C1C22 ⊆ Out C3xC3:C8488-(C3xC3:C8).11C2^2288,579
(C3xC3:C8).12C22 = D12.24D6φ: C22/C1C22 ⊆ Out C3xC3:C8968-(C3xC3:C8).12C2^2288,594
(C3xC3:C8).13C22 = D12.15D6φ: C22/C1C22 ⊆ Out C3xC3:C8488-(C3xC3:C8).13C2^2288,599
(C3xC3:C8).14C22 = D12.11D6φ: C22/C1C22 ⊆ Out C3xC3:C8968-(C3xC3:C8).14C2^2288,591
(C3xC3:C8).15C22 = Dic6.10D6φ: C22/C1C22 ⊆ Out C3xC3:C8488+(C3xC3:C8).15C2^2288,593
(C3xC3:C8).16C22 = Dic6.22D6φ: C22/C1C22 ⊆ Out C3xC3:C8488+(C3xC3:C8).16C2^2288,596
(C3xC3:C8).17C22 = Dic6.20D6φ: C22/C1C22 ⊆ Out C3xC3:C8488+(C3xC3:C8).17C2^2288,583
(C3xC3:C8).18C22 = D12.8D6φ: C22/C1C22 ⊆ Out C3xC3:C8488-(C3xC3:C8).18C2^2288,584
(C3xC3:C8).19C22 = D12.12D6φ: C22/C1C22 ⊆ Out C3xC3:C8968-(C3xC3:C8).19C2^2288,595
(C3xC3:C8).20C22 = C3xD4.D6φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8).20C2^2288,686
(C3xC3:C8).21C22 = C3xQ16:S3φ: C22/C1C22 ⊆ Out C3xC3:C8964(C3xC3:C8).21C2^2288,689
(C3xC3:C8).22C22 = C3xQ8.11D6φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8).22C2^2288,713
(C3xC3:C8).23C22 = C3xQ8.14D6φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8).23C2^2288,722
(C3xC3:C8).24C22 = C24.64D6φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8).24C2^2288,452
(C3xC3:C8).25C22 = C24.D6φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8).25C2^2288,453
(C3xC3:C8).26C22 = D12.Dic3φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8).26C2^2288,463
(C3xC3:C8).27C22 = C3:C8.22D6φ: C22/C1C22 ⊆ Out C3xC3:C8484(C3xC3:C8).27C2^2288,465
(C3xC3:C8).28C22 = S3xDic12φ: C22/C2C2 ⊆ Out C3xC3:C8964-(C3xC3:C8).28C2^2288,447
(C3xC3:C8).29C22 = D6.1D12φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8).29C2^2288,454
(C3xC3:C8).30C22 = D12.27D6φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8).30C2^2288,477
(C3xC3:C8).31C22 = C2xC32:3Q16φ: C22/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8).31C2^2288,483
(C3xC3:C8).32C22 = D24:7S3φ: C22/C2C2 ⊆ Out C3xC3:C8964-(C3xC3:C8).32C2^2288,455
(C3xC3:C8).33C22 = D6.3D12φ: C22/C2C2 ⊆ Out C3xC3:C8484+(C3xC3:C8).33C2^2288,456
(C3xC3:C8).34C22 = C3xQ8.7D6φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8).34C2^2288,687
(C3xC3:C8).35C22 = C3xS3xQ16φ: C22/C2C2 ⊆ Out C3xC3:C8964(C3xC3:C8).35C2^2288,688
(C3xC3:C8).36C22 = C6xC3:Q16φ: C22/C2C2 ⊆ Out C3xC3:C896(C3xC3:C8).36C2^2288,714
(C3xC3:C8).37C22 = C24.63D6φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8).37C2^2288,451
(C3xC3:C8).38C22 = D12.2Dic3φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8).38C2^2288,462
(C3xC3:C8).39C22 = C3xD8:3S3φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8).39C2^2288,683
(C3xC3:C8).40C22 = C3xD24:C2φ: C22/C2C2 ⊆ Out C3xC3:C8964(C3xC3:C8).40C2^2288,690
(C3xC3:C8).41C22 = C3xQ8.13D6φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8).41C2^2288,721
(C3xC3:C8).42C22 = C3xC8oD12φ: C22/C2C2 ⊆ Out C3xC3:C8482(C3xC3:C8).42C2^2288,672
(C3xC3:C8).43C22 = C3xD12.C4φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8).43C2^2288,678
(C3xC3:C8).44C22 = C3xD4.Dic3φ: C22/C2C2 ⊆ Out C3xC3:C8484(C3xC3:C8).44C2^2288,719

׿
x
:
Z
F
o
wr
Q
<